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Graph Theory
Matthew Brennan

1 Terms and Theorems

Terminology:

• A graph G is a pair (V,E) where V is a set of vertices and E is a set of edges which are
unordered pairs of vertices. In a directed graph, E is a set of ordered pairs of vertices.

• An edge {u, v} is said to be incident to its two endpoints u and v and two vertices
u, v ∈ V are said to be adjacent if {u, v} ∈ E.

• The degree deg(u) of a vertex u is the number of v ∈ V such that u is adjacent to v.

• A path is a sequence v1, v2, . . . , vk of distinct vertices such that {vi, vi+1} ∈ E for all
1 ≤ i ≤ k−1. A cycle also satisfies that {vk, v1} ∈ E. A walk is path and a circuit is a
cycle with the relaxed condition that vertices can be repeated and a circuit is a cycle.

• A graph is connected if there is a path between every pair of vertices. A tree is a graph
that is connected and contains no cycle.

• The complete graph Kn with n vertices satisfies that all pairs of vertices are adjacent.

• A graph is bipartite if its vertices can be partitioned into two sets A and B such that
all edges in the graph join vertices in A to vertices in B.

• A complete bipartite graph Km,n is a bipartite graph with |A| = m, |B| = n and such
that all pairs of vertices between A and B are joined by an edge.

• A graph is planar if it can be drawn in a plane in such a way that its edges only
intersect at their endpoints where its edges are represented as curved lines.

• A subset of vertices in a graph is independent if no two vertices are joined by an edge.

Theorems:

1. (Handshaking Lemma) Given a graph G = (V,E), the sum of the degrees of the vertices
in V is even with ∑

v∈V

deg(v) = 2 · |E|

2. If a graph G is connected and contains n− 1 edges, then it is a tree.

1



2014 Winter Camp Graph Theory Matthew Brennan

3. If a graph G with n vertices is connected, then it has at least n− 1 edges and there is
a spanning tree T which contains all vertices and a subset of the edges of G.

4. A graph G is bipartite if and only if it contains no cycles of odd length.

5. (Euler’s Characteristic) A planar graph with V vertices, F faces and E edges satisfies

V + F = E + 2

6. (Hall’s Theorem) Let G = (V,E) be a bipartite graph with parts A and B where
V = A ∪ B. Given a subset S ⊆ A, let Γ(S) denote the set of neighbors of S in B.
Each vertex in A can be matched with a unique vertex in B if and only if for all S,

|Γ(S)| ≥ |S|

7. (Eulerian Circuit) Given a graph G, there is an Eulerian walk passing through each
edge exactly once if and only there are at most two vertices of odd degree. There is an
Eulerian circuit passing through each edge exactly once if and only if all vertices have
even degree. If G is directed, there is an Eulerian circuit if and only if the in-degree of
each vertex equals its out-degree.

8. (Kuratowski’s Theorem) A graph is planar if and only if it does not contain a subgraph
that is a subdivision of K5 or K3,3.

9. (Turan’s Theorem) Let G be a graph that contains no complete subgraph with k
vertices. The number of edges e of G satisfies that

e ≤ k − 2

k − 1
· n

2 − r2

2
+

(
r

2

)
where r < k − 1 and n ≡ r (mod k − 1).

10. (Ramsey’s Theorem) Given two positive integers r and s, there is a minimal positive
integer R(r, s) such that any graph with at least R(r, s) vertices either contains a
complete subgraph with r vertices or an independent set with s vertices. It holds that

R(r, s) ≤
(
r + s− 2

r − 1

)
and R(r, s) ≤ R(r − 1, s) + R(r, s− 1)

2 Examples

The first example illustrates a case in which the underlying graph is not immediately obvious
but, when found, makes the problem much more tractable. The idea is also commonly used
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to analyze square grids. The squares in the grid can be viewed as edges in a bipartite graph
in which vertices correspond to the rows and columns of the grid.

Example 1. (IMC 1999) Suppose 2n squares of an n×n grid are marked. Prove that there
exists a k > 1 and 2k distinct marked squares a1, a2, . . . , a2k such that for all i, a2i−1 and a2i
are in the same row while a2i and a2i+1 are in the same column where a2k+1 = a1.

Solution. Consider the bipartite graph with vertices V = A ∪ B where the vertices in
A correspond to the columns and the vertices in B correspond to the rows of the n × n
grid. Each marked square is represented by an edge between the vertices for its row and
column and the number of edges is 2n. If the bipartite graph does not contain a cycle, it
is the disjoint union of t trees and the number of edges is |V | − t = 2n − t < 2n. This is a
contradiction and the graph must contain a cycle. Since the graph is bipartite, the cycle has
even length 2k. Consecutive edges in the cycle share an endpoint and therefore alternate
between sharing a row or column. Therefore the marked squares corresponding to this cycle
are the desired marked squares a1, a2, . . . , a2k.

The second example is a simple but classical use of induction to prove a general result on
graphs. Many graph theory problems either have an inductive solution or rely on a lemma
or theorem that can be shown inductively.

Example 2. There are n teams in a tennis tournament and every pair of teams faces off
in a single match. If there are no ties, prove that the teams can be arranged in a line so that
each team beats the team to its left.

Solution. We write a → b if team b beat team a. We prove the claim by induction. The
base case when n = 1 is clearly true. Now assume the claim is true for n− 1 and consider a
tournament G with n teams. Consider an arbitrary team u and the sub-tournament of G not
involving u. By the induction hypothesis, these n− 1 teams can be placed in an order such
that v1 → v2 → · · · → vn−1. If u → v1, then we may append u to the front to yield a valid
ordering. Therefore we can assume that v1 → u. Similarly if u→ v2, then u may be placed
between v1 and v2 to give a valid ordering and we may assume that v2 → u. Repeating this
reasoning yields that unless v1 → u, v2 → u, . . . , vn−1 → u, u can be placed in the list to
form a valid ordering. But in this case, u can be placed at the end of the line. In any case,
this completes the induction and proves the claim.

The next two examples illustrate how analyzing subgraphs or different representations of a
graph can solve problems. In the examples below, a subgraph that is the disjoint union of
cycles is analyzed. In other cases, looking at subgraphs such as spanning trees or independent
sets in the graph can be useful.

Example 3. (Caroll) A building consists of 4004001 rooms arranged in a 2001×2001 square
grid. Is it possible for each room to have exactly two doors to adjacent rooms?
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Solution. The answer is no. Consider the graph G such that the vertices of G are the rooms
in the building and two vertices are joined by an edge if there is a door between them. If
each room has exactly two doors, then each vertex of G has degree two. It will be shown
that this implies that G is the disjoint union of cycles. Begin with a vertex v1 and pick
v2, v3, . . . iteratively such that vi is adjacent to vi+1 and vi−1 6= vi+1 for all i ≥ 2. Note that
this is possible since each vertex has degree two. Since G has a finite number of vertices,
there is a vk in the sequence of vertices such that vk has appeared previously. Let k be
the minimal positive integer for which this is true. It follows that v1, v2, . . . vk−1 are distinct
vertices. If vk = vi where 2 ≤ i ≤ k − 2, then vi is adjacent to vi−1, vi+1 and vk−1 which are
distinct vertices, which contradicts deg(vi) = 2. Therefore v1 = vk and v1, v2, . . . , vk−1 form
a cycle. Also if T is the set of vertices of G other than v1, v2, . . . , vk−1, then no vertex in T
can be adjacent to any of v1, v2, . . . , vk−1 since otherwise deg(vi) > 2 would be true for some
1 ≤ i ≤ k − 1. Repeating this argument on T decomposes G into disjoint cycles. Now note
that every cycle of G consists of an even number of doors between rooms in the same column
and an even number of doors between rooms in the same row since the cycle must return to
its start point. Thus every cycle is even and G must have an even number of vertices since
it is the disjoint union of cycles. This contradicts the fact that there are 4004001 rooms.

Example 4. (Russia 1999) In a country, there are N airlines that offer two-way flights
between pairs of cities. Each airline offers exactly one flight from each city in such a way
that it is possible to travel between any two cities in the country through a sequence of flights,
possibly from more than one airline. If N−1 flights are cancelled, all from different airlines,
show that it is still possible to travel between any two cities.

Solution. Let G denote the corresponding graph and G′ denote the graph with the N − 1
flights removed. Let C be the airline with no flights cancelled and let C1, C2, . . . , CN−1
denote the other N − 1 airlines. Let Gk denote the subgraph with flights offered by either
C or Ck. Each city is the endpoint of exactly one flight offered by C and one offered by Ck.
Therefore each city has degree exactly two in Gk and, as proven in the example above, this
implies Gk is the disjoint union of cycles. Therefore if e is the flight offered by airline Ck

that is cancelled, then e is the only edge from Gk not in G′. Also, e is in a cycle in Gk and
the other edges in this cycle form a path between the endpoints of e in G′. Therefore for
every flight e cancelled, the endpoints of e are still connected in G′ implying G′ is connected.

The next example is a theorem from Dirac that illustrates the method of looking at an
extremal part of a graph. In this case, the longest path is examined to show the existence
of a Hamiltonian cycle.

Example 5. (Dirac) Given a graph G with n vertices such that each vertex has degree at
least n

2
, prove that G has a Hamiltonian cycle.

Solution. First it will be shown that G is connected. If G were not connected and C is
the smallest connected component, then |C| ≤ n

2
and each vertex in C has degree at most
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|C| − 1 < n
2
, which is a contradiction. Thus G is connected. Now consider the longest path

v1, v2, . . . , vk in G. If v1 or vk is adjacent to any vertex u not in the path, then the path can
be elongated by appending u to one of its ends, which is a contradiction. Now it will be
shown that there is an i with 1 ≤ i ≤ k − 1 and such that v1vi and vi+1vk are both edges in
G. If not, then for each i, at most one of v1vi and vi+1vk are edges in G, implying that there
are at most k − 1 edges adjacent to either v1 or vk in the path. Since all neighbors of v1
and vk are in the path, this implies that one of v1 or vk has degree at most k−1

2
< n

2
, which

is a contradiction. Thus the vertices v1, v2, . . . , vi, vk, vk−1, . . . , vi+1 form a cycle. Assume
for contradiction that there is some vertex u not on this cycle. Since G is connected, u is
adjacent to vi for some i and there is a path of length k + 1 beginning at u followed by the
vertices on the cycle beginning with vi, contradicting the maximality of the original path.
Thus the cycle is a Hamiltonian cycle.

The last example is a lemma with a slightly more computational proof than those above.
This result can be useful in problems concerning k-free graphs, those with no complete
subgraph with k vertices.

Example 6. (Zarankiewicz) Let G be a graph with n vertices that contains no complete

subgraph with k vertices. Prove that there exists a vertex of degree at most bn(k−2)
k−1 c.

Solution. Assume that every vertex has degree greater than n(k−2)
k−1 . Begin by setting

T = {v} where v is an arbitrary vertex of G and let S be the set of vertices adjacent to all

vertices in T . It follows that initially |S| > n(k−2)
k−1 . Append a vertex u in S to T . Now

|S| > 2 · n(k − 2)

k − 1
−N > 2 · n(k − 2)

k − 1
− n

where N is the number of vertices adjacent to both u and v. Continuing this process until
|T | = j yields similarly that

|S| > j · n(k − 2)

k − 1
− (j − 1)n

If j ≤ k−1, it follows that |S| > 0 and thus another vertex can be appended to T . Therefore
this process continues until |T | ≥ k. Note that this process ensures T is complete subgraph
with |T | vertices. Thus T eventually contains a complete subgraph with k vertices. This is
a contradiction and the desired result holds.

3 Problems

1. (Erdos) Given a graph G with n vertices such that each vertex has degree at least k,
prove that G has a cycle of length k + 1.
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2. Show that every graph G with average degree d has a subgraph in which every vertex
has degree at least d/2.

3. (HMMT 2003) There are a people who want to share b applies so that they all get equal
quantities of apple where a > b. Prove that at least a− gcd(a, b) cuts are required.

4. (Russia 2003) There are N cities in a country. Any two of them are connected either
by a road or by an airway. A tourist wants to visit every city exactly once and return
to the city at which he started the trip. Prove that he can choose a starting city and
make a path, changing means of transportation at most once.

5. (Bulgarian MO 2004) A group consists of n tourists. Among any three of them, there
are two who do not know each other. For every partition of the tourists into two buses,
we can always find two tourists in the same bus who know each other. Prove that there
is a tourist who knows at most 2n

5
other tourists.

6. A county contains 2010 cities, some pairs of which are linked by roads. Show that the
country can be divided into two states S and T such that each state contains 1005
cities and at least half the roads connect a city in S with a city in T .

7. (IMO Shortlist 1983) Let n be a positive integer. Suppose that n airline companies
offer trips to citizens of N cities such that for any two cities there exists exactly one
direct flight between the two cities. Find least N such that we can always find a
company that offers a trip in a cycle with an odd number of landing points.

8. Prove that one can write 2n numbers around a circle, each equal to 0 or 1 so that any
string of n 0’s and 1’s can be obtained by starting somewhere on the circle and reading
the next n digits in clockwise order.

9. (IMO Shortlist 2012) The columns and the row of a 3n×3n square board are numbered
1, 2, . . . , 3n. Every square (x, y) with 1 ≤ x, y ≤ 3n is colored red, blue or green
according as the modulo 3 remainder of x + y is 0, 1 or 2 respectively. One token
colored red, blue or green is placed on each square, so that there are 3n2 tokens of
each color. Suppose that on can permute the tokens so that each token is moved to a
distance of at most d from its original position, each red token replaces a blue token,
each blue token replaces a green token, and each green token replaces an red token.
Prove that it is possible to permute the tokens so that each token is moved to a distance
of at most d + 2 from its original position, and each square contains a token with the
same color as the square.

10. (IMO Shortlist 2002) Let n be an even positive integer. Prove that there exists a
permutation x1, x2, . . . , xn of 1, 2, . . . , n such that xk+1 is equal to one of 2xk, 2xk −
n, 2xk − 1, or 2xk − n− 1 for all 1 ≤ k ≤ n where xn+1 = x1.
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11. (Russia 1997) Let m and n be given odd positive integers. An m × n grid is covered
by dominoes so that exactly one corner square remains uncovered. A move consists
of sliding a domino into the empty square. Show that any corner square can be made
empty through a finite sequence of moves.

12. (Iranian TST 2006) Given a complete directed G with each edge colored either red or
blue, prove that there is a vertex v such that for all other vertices u there is a directed
path from v to u using edges of a single color.

13. (Chinese TST 1997) A graph with n2 + 1 edges and 2n vertices is given. Prove that it
contains two triangles that share a common edge.

14. A graph G has n vertices and m edges. If the edges are assigned the labels 1, 2, . . . ,m,
prove that there exists a path consisting of at least 2m

n
vertices such that the labels of

the edges along the path are in increasing order.
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